JAGDISH N. SHETH*

With factor analysis as a method of estimating parameters, an empirical
model of measuring brand loyalty for individual consumers based on frequency
and pattern of purchases is presented. Despite some limitations, the method
seems superior to stochastic models for generating robust measures at the in-
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dividual level.

INTRODUCTION

A variety of approaches have been introduced re-
cently for understanding buyer behavior and particu-
larly the phenomenon of brand loyalty and brand
switching [26]. Operations research techniques have
been extensively applied in this direction with the
availability, for academic research, of panel data,
notably from the Chicago Tribune and the Marketing
Research Corporation of America. Several stochastic
models of consumer behavior, in which some measure
of time as the independent variable and some measure
of brand loyalty as the dependent variable, have been
extended and tested using panel data. For example,
Kuehn [15, 16] has developed a linear learning model
that states that probability of buying a brand at time
¢ depends on the sequence of all past purchases before
time ¢. Frank [8], however, finds evidence suggesting
that probability of buying for each buyer remains
constant over time and therefore independent of
purchase history, Most researchers have argued that
dynamics of brand loyalty is a first-order Markov
process {1, 3, 4,7, 11, 12, 17-19, 21, 22, 27, 34]. They
feel that purchase probability, as a measure of brand
loyalty, at time ¢ is dependent only on the immediate
past purchase at t—1, and any earlier history is irrele-
vant for prediction.

Compared with traditional measures of market share
and proportion of repeat buyers, the diffusion of
stochastic models of consumer behavior has tremen-
dously enriched our measures of brand loyalty. How-
ever, the panel data used in these models are gathered
for monitoring market behavior and not for testing
any specific stochastic model with its set of assumptions.
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Second, consumer behavior is complex enough that
no single theoretical model is appropriate to all prod-
ucts and consumers. There is, therefore, a need for an
empirical model similar to the curve-fitting technique
that will derive measures of brand loyalty for each
situation.

Yet another and important consideration is that
existing stochastic models have so far provided meas-
ures of aggregate brand loyalty for the whole market.
What we need is a model that will, besides aggregate
brand loyalty measures, provide measures of each
consumer’s brand loyalty.

Based on rapk reduction procedures of matrix al-
gebra, a factor analytic model of brand loyalty is pro-
posed and tested in this article. The model is empirical
in that it generates measures of brand loyalty from a
set of panel data for which there need not be any a
priori hypothesis on the form or shape of the brand
loyalty curve over time. However, if some hypothesis
does exist, the model can test whether the theory holds
in that particular situation. More interesting and valua-
ble is the model’s capability to generate brand loyalty
scores separately for each person in the sample. The
distribution of such scores then becomes the starting
point for further analysis for market segmentation.

DESCRIPTION OF THE MODEL

Underlying consumer behavior analysis, we seem
to use implicitly the S-O-R paradigm proposed by
Woodworth [35] in psychology. The paradigm states
that R (response function) is the manifested behavior
or response that is dependent on both the environmental
stimulus (S) and the state of the organism (O0). The
manifested response thus depends on (a) stimulus
condition and (b) the person. Needed, therefore, is a
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formulation that will resolve a buyer’s manifested
behavior between the environmental effects and the
individual buyer himself. Such resolution will separate
the environmental and individual influences (parame-
ters) at those points in time when the researcher ob-
tains measures of purchase behavior.

Estimation by Factor Analysis

Tucker [31] provided a useful approach to individual
parameter estimations of several linear and nonlinear
functions, Take a function:

O y=f(0:b,0:---,x):
where y represents the dependent variable, x the in-
dependent variable, and a, b, ¢, - - - are constants of

the curve. In buying, for example, y may represent
the probability of a brand’s purchase and x may be
the time periods or trials (x = 1,2, 3,---,n); a, b,
¢, -+ ete, are the parameters of the functional rela-
tion. The buyer’s function can be generally represented
as

2 yi = flas, by €iyenny X).

If j is any particular point of this function with
coordinates x; and y;; , we have

(3) Vi = flai, b, eyny X))

Thus a given observation y;; is a function of the values
of individual parameters and the value of the inde-
pendent variable, namely x;. Several functions, both
linear and nonlinear, may be transformed to produce

@ v = B Sl En(G).

The f.(x;) are a number of functions of the inde-
pendent variable x; . Similarly, the F,(G.) are functions
of the parameters G; = 4., b, ¢;, --- etc. Thus an
observation y;;, which results from the interaction
of the person and the environment, is a sum of the
products of functions of the individual parameters
and corresponding functions of the independent varia-
ble. The problem now is to find some technique to
provide estimates of fn(x;) and F.(G;). Equation 4 is
analogous to the basic linear postulate of factor analy-
sis. If we define

Fu(x) = ajm and F.(G) = S$n:s

then the basic factor analytic postulate is readily
obtained:

&) Yii = ,,.Z; QjmSmi -

The transformation process analyzes a functional
relation into m linear dimensions very similar to resolu-
tion of complex wave forms, from sound or heat vibra-
tion, into simpler component sine-wave curves by
Fourier analysis.
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For example, suppose our theory dictated that, for
a finite length of time, a brand’s purchase probability
is independent of the history of purchases. Then for
a point in time j the probability of a consumer i pur-
chasing is y;; . Since it is independent of time, we have
a functional relation,

Vit = iy
where a; is some level of probability that can range

from zero and one and is a specific parameter of con-
sumer .

If we define
g =1
and
S = a4,
then

Yii = GaSii .

There is only one linear dimension. Furthermore, if
we plot the a;; values on a graph where the x-axis is
consecutive trials or time periods and the y-axis repre-
sents a;; values for each j(j = 1, 2, 3,---, n), we
should expect a horizontal straight line since a, is a
constant by definition.

If, however, our theory dictates that the purchase
probability of the brand is some linearly increasing
function of time periods or trials, then for a given
consumer i at point j, we have

yii = ai + bix;.

This function can be transformed into Equation 5,
if we define

ap =1 S1i = @i
ajs = Xj 595 = by,

and write
2
Vii = QuSu + QjeSa = Zlajm»gmi .
=

The linearly increasing function is resolved into two
dimensions (rz = 2). If we again plot a;; values for j =
1,2, 3, - n, it will be a straight line since a, is a
constant. However, if we plot a,, values forj = 1, 2,
3,--+n, we will have a positively inclined straight
line since values of x; are ordered.

Finally, suppose our theory dictates that the pur-
chase probability is some exponential function of time.
Suppose the function looks as follows for a given
consumer / at a point j:

e = &
We can rewrite this as

Vii = (ebi)(ez’.)s
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and define

L

a1 = ¢’ S =€,

so that
Yis = @St -

This exponential function can be resolved in one
dimension. Again, if we plot the values of a; for j =
1, 2,3, --- n, we should expect values that are powers
of the natural log base e.

The a;, and s.: coefficients obtained by linear
transformation are parameters of the functional rela-
tion. These parameters are more difficult to interpret
than those derived by fitting a least-squares curve since
the common meanings of intercept and slope are lost
in the process of transformation. However, they serve
the same function of obtaining the best fit to the data.
We could, therefore, use them to predict purchase be-
havior in the future.

The aj, coefficients are aggregate parameters for
each of the j time periods or trials. In the S-O-R para-
digm discussed earlier, the a;, coefficients summarize
the influence of § or the environment. As such, they
remain constant across a sample of consumers. Later,
we will show that they determine aggregate purchase
behavior and hence tell whether it is a monotonically
increasing, decreasing, or constant function of time.
When we plot each dimension m using a series of
Qi , 4 curve results which we will call a “reference
curve” [31]. There will be as many curves as there are
dimensions of a functional relation. A family of refer-
ence curves then summarizes the aggregate complexity
of functions. In fact, the function’s complexity deter-
mines the number of dimensions. To put it differently,
a function can be unidimensional or multidimensional.
The number of reference curves will tell us a function’s
dimensionality.

So far we have said nothing about the s, values.
Note that each consumer will have as many s, values
as there are linear dimensions m of the function. In
the first and third types of functions shown earlier,
there was only one dimension (m = 1); therefore, the
consumer 7 had only one value. In the second type of
function, however, there were two dimensions (m = 2),
and the consumer i had two values. These values are
the derived parameters of the functional relation and
serve the same function as the primitive parameters
obtained by the usual estimation procedures. Thus
in the second type of functional relation, ie., y; =
a; + bx;, the first value s,; will indicate the level of
brand loyalty for the consumer #, and the second value
s2; will indicate both the extent and the direction
(whether positive or negative) of change as a function
of time.

The resolution of a function into linear dimensions
is based on matrix algebra theorems that create a
least-squares (minimization of error) estimation of
the derived parameters. The procedure is described
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in the appendix. However, it is useful here to compare
the method with the curve-fitting technique. First,
in curve fitting, the parameters estimated are for the
aggregate sample and not for each person in the sam-
ple. The parameters derived here are for each person i
separately. Second, we simultaneously obtain separate
estimates of parameters for all # buyers that are stored
in a matrix as column vectors, In the first type of func-
tion in our example, i.e., y = ¢, a single dimension such
as s;; summarizes all possible values from zero to ome.
We may, for instance, simultaneously estimate and
store Si; = .4 and Sy, = .8 for two consumers having
the same functional relation but different levels. Such
estimation and summary of parameters of each of the
consumers is even more useful when there are two di-
mensions as in the second type of function (y;; = a; +
bix;) in our example. With only two dimensions, we
can aggregate all persons who have an infinite variety
of linear function shapes (determined by the value of
a; and b;). The extreme cases in this function would
be:

L yje=a;, 6, =0,
2. yi=bi,a =0,
3. yi = a4 bixj,a; %~ 0,b; = 0.

The first consumer has a positive value for s;; and
a zero value for sy, ; he will therefore have a constant
purchase probability during our study’s time interval.
The second consumer has a zero value for s;; and a
positive value for s, ; he will therefore start at the
zero level, and his probability will increase upward
linearly, The third consumer has a positive value for
both s; and s5;; he will initially start at a nonzero
probability level that will increase linearly with time.
We could not have aggregated a sample of consumers
and still maintained various shapes for each of the
three consumers in ordinary curve fitting.

DEFINITION OF BRAND LOYALTY

Our interest here is to use the factor analytic model
described in the appendix to estimate each consumer’s
extent of brand loyalty, which is an index of some
observed phenomenon as are ‘‘social class” and “prob-
ability of an event.” Like any index, brand loyalty is
likely to have several indicators all manifested by the
consumer. For example, extent of purchase at a point
in time or the frequency of purchase of a brand during
a certain time interval are two possible indicators of
brand loyalty. However, the most commonly used
data are the number of times the consumer buys and
the relative frequency of buying a given brand. Sup-
pose a consumer purchased the brand we are interested
in three in five times during a time interval, and the
other two times he bought another brand. We may
show this as a sequence 01011, in which 1 represents
purchase of the brand we are interested in and 0 repre-
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sents purchase of any other brand. Using the relative
frequency of three in five purchases, we may sfate that
his brand loyalty is .60. This is tantamount to his
purchase probability if we assume no sampling prob-
lems.

However, the 01011 sequence provides additional
information on the purchase pattern, which is crucial
in any time-dependent process. The pattern is ignored
when we use only the probability measure as described
earlier because three purchases of the brand, however
arranged, will give the same answer. It would appear,
based on empirical evidence, that pattern will be im-
portant when new products are introduced and when
the consumer is completely unaware of a product class.
Even among mature, well-established product classes
such as detergents and coffee, the pattern of buying
a brand becomes important because constantly chang-
ing market conditions will disrupt any tendency toward
stable purchase behavior of the consumer. Occasion-
ally, however, we may find a period of stagnant market-
ing activity for a well-established product class during
which brand loyalty may be simply a function of rela-
tive frequency and pattern may not be important.

Brand loyalty then is a function of a brand’s relative
frequency of purchase in time-independent situations,
and it is a function of relative frequency and purchase
pattern for a brand in time-dependent situations. The
factor analytic model of brand loyalty handles both
situations.

DESCRIPTION OF FACTOR ANALYTIC MODEL
OF BRAND LOYALTY

To estimate brand-loyalty parameters as a function
of time for each consumer, we need a sample of con-
sumers who all manifest the purchase behavior. Suppose
there are five consumers and three trials; record the
purchase of a given brand as one and the purchase of
any other brand as zero. Then put the raw data into
a matrix ¥ with three rows for the trials and five col-
umns for the consumers:

Consumer (i)
I 2 3 4 5

1 o 1 0 o 1
Trial (j) 2 1 1 o0 11
3 1 0 1 1 1

Each cell y; contains data on purchase behavior
that is caused by interaction of consumer i with the
environment at trial j. Each row j is a vector containing
information on the outcomes at trial j among a sample
of consumers. It summarizes the aggregate sample
purchase activity classified as dichotomous events.
For example, of these five consumers, two bought
the brand on the first trial compared with four who
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bought the brand on the second and third trials. The
a;» parameters in Equation 5 are derived from these
row vectors.

Each column i is a vector that contains information
on the purchase pattern of each consumer i. For exam-
ple, the first consumer began to buy the brand on the
second trial and repeated the purchase on the third
trial. The fifth consumer, however, bought the brand
on all three trials. The sn; parameters in Equation 5
are derived from the column vectors.

To estimate the parameters, the factor analytic
model (see the appendix) transforms the n row and
the N column vectors as points that are projected on
a space with as many dimensions as there are reference
curves of the underlying functional relation. This pro-
jection process also obtains a least-squares solution
that minimizes error in the total system.

We may state Equatiorn 5 in matrix notation to
summarize several functions of a sample of consumers.
Then

(6) Yan = An X rSr X Ny

where Y is a completely filled rectangular matrix
(n < N) containing y;; cells, 4 is an n X r matrix
containing a;, cells, and S is an r X N matrix contain-
ing s cells. Each column of the 4 matrix is a dimen-
sion of the function and therefore a reference curve
as already discussed. Each column of the S matrix
contains parameters for each i consumer. Both the
sign and size of a set of s.; parameters for consumer
i determine his functional relation.

‘When several consumers, each having a furctional
relation of the form of Equation 2, are aggregated
into a data matrix Y, the first reference curve ay (f =
1,2, 3, -+, n) approximates the average curve, which
is the plot of average values at j time points or trials.
If the function has only one dimension, as did the
first function in our earlier example, the first reference
curve is identical to the mean curve. If a function is
complex and requires more than one dimension, the
second, third, fourth, etc. reference curves represent
deviations from the first reference curve.! As previously
mentioned, a functional relation may be multidimen-
sional and therefore may have a family of reference
curves.

1This stems from the process of aggregation in which each
function issetas yi = (@ 4+ «, 5.+ 8,2 + v,... X), ie., expressed
as deviation from the means of the constants. This also enables us
to establish critera for the legitimacy of aggregating persons having
a given functional relation. As a formal criterion, all individual
functions, having second and higher order partial derivatives for con-
stants that become zero when the function is expanded by Taylor’s
series, can be aggregated without the aggregate function’s form be-
coming different from that of the persons. The same functions can
also beexactly transformed into the linear postulate. Other functions,
having second or higher order partial derivatives that remain
nonzero, can only be approximated by 2 finite number of reference
curves {6, 28, 30).
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Standardization of Different Sample Sizes

The first step in resolving a data matrix Y consisting
of n trials and N consumers is to post-miltiply it by
its transpose ¥’ to obtain a square symmetrical matrix
YY'. The YY’ is a cross-products matrix in which the
diagonal values are the sums of squares and the off-
diagonal values are the sums of cross products of values
in the original data matrix. In our example of three
trials and five consumers, if we multiply the ¥ matrix
by its transpose ¥’, we obtain Y'Y’ which is:

Trials
1 2 3
1 " 3 2 2
Trials 2 1 2 3 2
3 ' 2 2 3

As can be secen, when the cell values of the data
matrix ¥ are dichotomies, the cross-products matrix
YY' is a square symmetric contingency table. The
diagonal values indicate the frequency of consumers
who bought the brand at each of the ; trials. The off-
diagonal values give us the switching pattern in the
sample. For example, three of five consumers bought
the brand on the first trial, and of these three consumers,
two continued to buy the brand, but one switched to
another brand. Similarly, three of five consumers bought
the brand at the second trial, and two of them con-
tinued to buy the brand, but one switched at the third
trial.

In estimating the S matrix from the data matrix ¥
(actually YY’ matrix), the parameter coefficients are
rescaled to maintain the orthogonal property of the
S matrix, ie, S8’ = I The orthogonal property is
essential to factor analytic procedures, Since the §
matrix is r X ¥, the coefficients are a function of the
number of consumers in the sample. Then even if two
sets of data differ only by sample size, the resulting
coefficients are not comparable. Therefore, it is impera-
tive that data be standardized to remove the effects
of sample size. This can be done either before or after
the analysis; a description of standardization follows.

To remove sample-size bias, it is necessary to express
the cross-products values not in terms of the absolute
but rather the relative joint frequencies. Therefore,
we may state Pj. = N, /N where N is the total number
of buyers. The result will be a cross-products matrix
containing values only between zero and one. Dividing
the relati\zle frequencies Pj; by the standard deviation
A/N,Nus yields a set of proportionate values that

2The division of P by standard deviation becomes relevant
when we deal with multiple brands simultaneously as separate
states and have, in essence, a manifold contingency table [2].
However, it is not essential when we deal with only two state sys-
tems as in binary data. It is incorporated here because it enables us
to use existing computer programs,
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may be designated as
Y,:'k = Pik/\/P/Pk = Njk/\/ZV;N:.

This is equivalent to pre- and -post-multiplying the:
cross-products matrix YY” by a diagonal matrix D-1/2
having the elements 1/4/N;. We thus arrive at a stand-
ardized square symmetric matrix, for example R.

) R=DinYY'Dis

The matrix R is positive semidefinite. Being sym-
metrical, it has grammian properties. The standardiza-
tion results in placing ‘ones in the diagonal, making
it suitable for direct principal components analysis.

The analysis yields a set of reference curves. The
first reference curve will act as a mean curve and there-
fore approximate the relative frequency of purchases
of the brand at each trial. However, the values will
differ because of the second step in the standardization.
A peculiarity exists because the second and other refer-
ence curves usually contain negative values, making
isomorphism with probability notions untenable.
With appropriate rotation of the principal axes (refer-
ence curves) we can easily avoid negative coefficients.
However, since second and other reference curves
act as correction terms for the first reference curve,
it may be interesting to work with negative coefficients.

In the appendix, several procedures (size of the latent
roots, runs test on reference curves, and calculation
of the sum of the squares of first differences among
consecutive coefficients a;., called 2d2) can be used to
determine a finite number of significant reference
curves.

DEVELOPMENT OF BRAND LOYALTY OF RICE

This section describes a specific application of the
model. I gathered the data [24] to test central concepts
of the Howard-Sheth theory of buyer behavior [14].
A main interest was to observe the development of
brand loyalty from its beginning. The basic hypothesis
was that development of brand loyalty over time is a
process of learning by repeated purchases of a brand.
Since for many consumer grocery and personal care
items, buyers establish brand preferences early in life
[9, 10, 20, 33], existing commercial panel data are not
suitable. Therefore, a panel was formed of foreign
students as soon as they came to the United States.
Foreign students are unfamiliar with U.S. brands in
several product categories and learn to form attitudes
about them once they reach this country. Several
measures of brand generalization and personal in-
fluence were obtained to prevent learning brand loyalty
by sources other than repeated experiences {25]. The
factor analytic model of brand loyalty was applied to
several data matrices. We will restrict our discussion
here to the development of brand loyalty of rice.
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Analysis of Data

The first step in the analysis is to form the data
matrix Y with y;; elements representing the purchase
behavior of the ith buyer at the jth trial. Since our
interest is not focused on a particular brand but rather
on the loyalty of the buyer toward any brand, we may
take the brand with the maximum purchase frequency
as the preferred brand and code it as one and all other
brands as zero [24, pp. 125-30].

The data matrix analyzed refers to the purchase of
rice by several panel members. A sequence of seven
trials was chosen for analysis, the sample size was 14.
Thus, data matrix ¥ has seven rows and fourteen
columns. Using the procedures described earlier, the
data matrix was standardized to obtain the R matrix.

The R matrix is presented in Table I. The standard-
ization has resulted in placing ones in the diagonal
and proportionate values in the off-diagonal elements.
Table 2 provides the first three reference curves, The
first reference curve explains a little more than 85
percent of the total variance and seems to be the only
dominant curve. The runs test performed on all three
reference curves shows that only the first curve is
significant. The corresponding characteristic (latent)
roots also support this: the first root is very large (5.97)
and the second and third roots are much smaller (.62
and .15). Finally, the =4* calculations suggest that only
the first curve is very smooth. Therefore, only one
significant reference curve is present in this data.

Table 1

STANDARDIZED PRODUCT-SUM MATRIX FOR
RICE BRAND LOYALTY
IN=14,n =7)

1 2 3 4 b 6 7
1 1 707 650 707 554 .500 597
2707 1 940 .877 .877 .823 .886
3 .63 .940 1 .940 940 .886 944
4 707 877 .940 1 877 877 .886
5 .55 877 940 877 1 .940 .886
6 .30 .823 .886 .877 .940 1 944
7 .57 .886 944 .886 .886 R 1

Individual Brand Loyalty Scores

Our interest is to obtain s, parameters that will
reveal the strength of brand loyalty for each of the
consumers, Using the procedures described in the
appendix, the brand loyalty scores of panel members
are calculated and appear in the bottom part of Table
2. Since we have only one reference curve, the func-
tional relation between brand loyalty and time is uni-
dimensional; therefore, the brand loyalty scores are
unidimensional. If the functional relations of the panei
members were diverse such that two dimensions were
necessary, we would have obtained two dimensional
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values for brand loyalty. Then one could classify the
panel members as belonging to the first or the second
reference curve or a combination of both. However,
here there is only one reference curve, which means
that all panel members are homogeneous regarding
type of functional relation. However, their loyalty
strength is heterogeneous as evident from the brand
loyalty scores that range from .08623 to .31225.

The brand loyalty scores of some panel members
are given below together with their purchase pattern:

Sequence  Purchase pattern Score Panel member

(1) 1111111 = .31225 (1)
2 0111111 = .2698 (5
3 0011111 = .27 (3)
@) 1111001 = .223% (10)
& 0110111 = .22366 (14)
6 0000011 = .0823 2)

The brand loyalty scores immediately show the n-trial
dependency. In fact, they provide values for all logical
possibilities of n-trial dependencies which for seven
trials number 128. In other words, the model accom-
modates each terminating branch of a tree diagram
for a two-state n trial system. Note also that in se-
quences (3), (4) and (5) the purchase frequency of
the favorite brand is the same, but the brand loyalty
scores differ because of different arrangements. How-
ever, the degree of difference is negligible. This
clearly implies that compared to frequency the in-
fluence of pattern of a given number of purchases is
not large, at least for the three sequences considered.

More important, the brand loyalty scores support
the a priori, theoretically based expectation of learning
brand preferences. The statistical learning theory with
the traditional negatively accelerating curve states
that each additional consecutive purchase of a brand
will add a fraction of learning still incomplete. The
fess the prior learning, the greater the increment. This
can be seen by comparing the first differences between
sequences (1), (2), and (3). The differences are .31225 —
26998 = .04227, and .26998 — .22407 = .04591. The
last fraction is greater than the first because prior
learning was less, as the purchase pattern shows.

Other Supporting Evidence

The brand loyalty scores were validated by two other
approaches summarized here. First, tests of the null
hypothesis that a two-state sequence could have been
generated by chance were performed on each purchase
sequence. This strongly supported the distribution of
brand loyalty scores. Second, another product, namely
bread, was used to provide comparison of brand loyalty
scores. By the same tests, it was found that brand
loyalty was lower for bread, and the brand loyalty
scores supported this.?

3 See {24, Chapter 3; 25] for a fuller discussion.
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Table 2
REFERENCE CURVES AND PANEL MEMBERS’ BRAND LOYALTY SCORES FOR RICE
(n=7N =14}
Reference curves
Trial Runs test
Curve I Curve 11 Curve IIT
1 71356 68768 —.10013 Curve I:
2 .94803 .08364 27699  n =7,m = 0, u = 1 Significant
3 98079 —.047%0 11731 Curve IIL:
4 95665 .05332 — 09808 n=3m=4,u =4pu<u)=.542
5 94803 — . 19430 .02306 Curve III;
6 93329 —.27832 —.19046 n=3,m=4u =5
7 .95750 —.13585 —.05899 P <u)= .80
Percentage variance explained 85.3 8.8 2.2
Latent root 5.97 .62 15
Pl 0563 .4804 2918
Brand loyaliy scores
- Panel member Score Panel member Score
1 31225 8 31225
2 08623 9 .31225
3 .22407 10 .22395
4 31225 11 .26998
5 .26998 12 31225
6 31225 13 .26998
7 .31225 14 22366

LIMITATIONS OF THE MODEL

Despite the versatility of the factor analytic model of
brand loyalty to generate more robust measures of
individual buying behavior, it has several limitations.

First, the model is essentially an empirical model
although in psychometrics several successful attempts
have been made to use it as a theoretically based model.
As an empirical model, it resembles a statistical tech-
nique more than a model since the latter is commonly
used to describe a hypothesis based on some theory.
This limitation, however, is not as serious as it ap-
pears. It is possible to define a priori a functional rela-
tion between time and purchase behavior based on
some theory of consumer behavior, and then use the
model to test whether the theoretical relation is justified
in a particular situation. For example, if we assume that
probability of buying in a specific situation is a station-
ary Bernoulli process, then the functional relation will
be y = ¢ where c is the constant level of brand loyalty.
Data analysis using the factor analytic model would
then confirm or reject the theoretical hypothesis,

Second, brand loyalty scores obtained using the
model are more difficult to interpret than probability
measures. The difficulty arises because the scores do
not automatically represent the probabilities of buying
the brand, Although there is the unique starting point

(lower limit value), namely zero value for a consumer
who never buys the brand under investigation, there
is no terminating point (upper limit value) defined
a priori as with probability measures. The upper limit
is only empirically derived from the analysis, and it
varies from one investigation to another depending
on the number of trials and the functional relation
in each specific situation.

However, the brand loyalty scores, similar to the
probability measures, tell us the relative odds of con-
sumers’ buying the same brand again. Since we are
more accustomed to probability notions, an interesting
extension of this research would be to establish iso-
morphic transformation of brand loyalty scores into
probability measures. The resulting probabilities would
then be functions of both frequency and pattern
(history) of purchases because brand loyalty scores
are themselves based on both frequency and pattern
of purchases.

Finally, there is a technical limitation. Not all func-
tional refations between time and purchase behavior
can be resolved into a unique family of reference curves
or dimensions. There are some nonlinear functions
that cannot be exactly resolved.* Generally, if more
than two significant dimensions are obtained in an

4 See [24] for further discussion on this limitation.
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empirical situation, it is safe to conclude that the model
is inadequate for exact least-squares solution.. An
approximate solution to a satisfactory degree of ex-
plained variance, however, can be obtained in these
situations by taking a few of the dimensions and ob-
taining s,..; values only for these dimensions.

SUMMARY AND IMPLICATIONS

The factor analytic model of brand loyalty seems
useful in obtaining individual and environmental
parameters for several kinds of functional relations.
An added advantage is that it can work with theoreti-
cally defined functions or, more important, empiri-
cally derived functions, which is crucial when faced
with analyzing the standard data collected for monitor-
ing market conditions.

Preliminary results of a current investigation of the
brand loyalty of five different products using the com-
mercial panel data indicate that brand loyalty is stable
and resembles a Bernoulli process.

An interesting extension of the model is to convert
it to a multistate model in which several brands are
simultaneously analyzed for several time dependencies.
Analysis of the multistate extension may provide bet-
ter measures of such aggregate phenomena as market
share and effect of promotional activity because time-
lag effects are built into the model.

An important implication of the factor analytic
model of brand loyalty concerns further investigation
of brand loyalty scores. The model provides a single
number for each buyer that summarizes his pattern
of purchase behavior over time. This is a much more
desirable measure than one of average tendency.
Using the brand loyalty scores we may discriminate
between two or more groups having some explanatory
or controlling variables. For example, if we experi-
ment in a market in which some marketing activity
is deliberately varied and if we would like to measure
its effect on brand loyalty over time, the sample of peo-
ple in the experimental market may be compared,
based on their brand loyalty scores with a matched
sample of people from the control market. Extending
this, we can simultaneously compare effects of several
marketing activities in different markets.

APPENDIX

Determination of Reference Curves

The data matrix Y containing n trials (j = 1, 2,
3,---,nyand N buyers (/ = 1,2, 3, ---, N) can be
resolved into factorial components or reference curves
by using an important theorem in matrix algebra
proved by Eckart and Young [5] and later by Young
and Householder [36]. It is possible to consider the
cell entries of any rectangular matrix either as projec-
tions of row variables on orthogonal axes represented
by the columns or as projections of column variables
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on different orthogonal axes represented by the rows.
The Eckart-Young theorem not only indicates how
both row and column variables may be represented
simultaneously by their projections on the same set
of orthogonal axes but also that the set accounts for
more variance than any other set of orthogonal axes.
The Eckart-Young procedure involves approxima-
tion of a matrix by another with a lower rank. It con-
sists of analyzing a given data matrix into the product
of three matrices containing a series of roots and vec-
tors. Any complete n X N rectangular matrix (j < 7;

i=01,23---,ni=12,3---, N} Y can be re-
solved as:

(9) Y = UI'W,

where

U is an n X » orthogonal matrix of left principal
vectors (UU’ = I),
W is an N X N orthogonal matrix of right
principal vectors (WW' = I),
and I' is an n X N diagonal matrix contain-
ing v. roots m = 1, 2, --- r) in the upper
left section and zeroes elsewhere.
A matrix Y, of rank r(z < n) is constructed using the
roots and vectors that give the best approximation of
data matrix Y in the least-squares sense. The approxi-
mate matrix Y, is constructed by taking the first r
Ieft principal vectors in U, the principal roots in I,
and the first » right principal vectors in W. In other
words,

(10) Y. = UTIW,.

Ifwelet U, = Aand W, = Swhere 4 isann X r
matrix having a;. elements and S is a r X N matrix
having s..; elements, then

(11) Y, = AS = (E @jmSmi)-
m=L

The 4 matrix provides the estimates of the environ-
mental parameters, and the § matrix provides the esti-
mates of the person’s parameters.

The matrix S consisting of » rows and N columns
may be interpreted as a table giving the coordinates
of the score points of N buyers in r space. The matrix
A = U,I', consisting of rn rows and r columns may be
interpreted as a table of r components or reference
curves running over a series of » trials or time periods.
Since the roots and vectors are ordered under Eckart-
Young procedure (v1 > ¥2--- > v.), each reference
curve witl explain successively less variance. The mag-
nitude of the variance explained by each reference
curve will be given by the squares of the principal roots
vm . If all roots are taken into account, the total vari-
ance will be explained. However, it is sufficient to take
the first r principal roots and vectors that will explain
some satisfactory amount of variance, and the rest
may be treated as resulting from random fluctuations.
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Resolution of the data matrix Y into the product
of three matrices is easily done if ¥ is multiplied by its
transpose Y':

YY' = (UI'W)(W'TU")
= ur,

realizing that WW’ = I

The YY' matrix, which we will call the cross-prod-
ucts matrix, contains the sums of squares and cross
products. The formation of a square symmetric matrix
then transforms the problem to one of finding the
characteristic roots and vectors of YY”.? U contains
the characteristic vectors, and I"* contains the charac-
teristic roots. Note that the characteristic roots of
YY’ or Y'Y are squares of the principal roots of Y.
Each root is ordered such that the first accounts for
maximum variance. Taking the first set of » charac-
teristic roots and vectors will enable us to create the 4
matrix. Thus

(12)

A=UTl..

The procedure just described is similar to the princi-
pal components analysis developed by Hotelling [13].
However, there are secveral significant differences,
both in theory and in the steps involved in the two
procedures. First, Hotelling’s interest is to maximize
the variance explained by the first component, but we
minimize the error in the whole system. The two ob-
jectives do not coincide nor give the same answer.
Second, Hotelling provides only an iterative process,
but using the eigenvalue-eigenvector theorem in our
method gives an exact solution. Third, Hotelling’s
method derives the components successively, each
explaining the maximum wvariance in the residual
system. The procedure described here is a simultaneous,
least-squares solution. Finally, the assumptions un-
derlying the Eckart-Young theorem are fewer and
permit use of any data. The only restrictions are that
the data matrix be rectangular (n < N) and that it be
filled. This permits one to use both qualitative or quanti-
tative or nonmetric and metric data [2]. Furthermore,
it is legitimate to use a cross-products matrix as opposed
to a covariance or correlation matrix. A correlation
matrix is used in the standard R-type factor analysis,
but it removes information about both the mean and
the dispersion by standardizing to zero mean and unit
variance. Such standardization is, of course, necessary
if our measures on row variables are different in kind.
A covariance matrix jis used in principal components
analysis, but it removes information about the mean. A

s Because of the symmetry, we can premultiply ¥ with its trans-
pose and get
Y'Y = (Wru)urwy
= W'IW.

Then we can easily determine U.
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cross-products matrix retains both the mean and the
dispersion. In time-dependent situations, if there are
individual differences at a given trial, it is necessary to
use a cross-products matrix {23].

Estimating the Number of Significant Reference Curves

The Eckart-Young procedure of resolving a data
matrix Y into the product of three matrices will usually
result in several roots and vectors equal to the size of
the matrix. Total variance, which is equal to the sum
of squares of the diagonal values of the cross-products
matrix YY’, will be accounted for by the sum of the
characteristic roots. Each characteristic root succes-
sively explains the residual variance of the matrix.
In an empirical situation in which we have no theoretical
relation postulated before the analysis, we do not know
how many reference curves are needed. However,
several procedures to determine the number of signifi-
cant curves are possible.

First, if we plot the roots’ values successively, we will
usually obtain a discontinuity in the plot that can be
used as a cutoff point for significant roots and corre-
sponding vectors.

Second, the first reference curve, as mentioned
earlier, approximates the mean curve. Since all the
reference curves are orthogonal, the remaining refer-
ence curves will fluctuate about the zero line. Any
significant trend in this fluctuation can be indicated
by a runs test (see [29]). Here, the runs test may be
applied to the groupings of pluses and minuses repre-
senting the fluctuations of the reference curve above
and below the zero line. The systematic reference
curves will determine the number of r dimensions
[32].

Finally, in instances like ours in which the variables
are the consecutive trials and the series of coefficients
(a;m) for a meaningful reference curve show the rate
of change, we may obtain a quantitative statement
of the curve’s smoothness by taking the differences
between consecutive coefficients and summing the
squares of these differences, i.e., calculate 242 The
Zd®> may help determine the number of reference
curves since small values will be associated with the
curve’s smoothness.
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